
Extend Script
and the
GoLive SDK

One of the more complex and powerful new features intro-
duced with GoLive 5 is Extend Script. Extend Script

enables you to add new capabilities and features to GoLive by
writing code in JavaScript and the special markup tags pro-
vided by the Extend Script SDK (Software Development Kit).
You can add new menus, palettes, custom boxes, inspectors,
and more. It is beyond the scope of this book to examine
Extend Script in great detail but this appendix briefly outlines
how to go about writing a basic GoLive Extension. It is assumed
that you have a basic understanding of JavaScript and HTML.

It is also possible to write binary extension modules using
C/C++ instead of JavaScript. This enables you to add very
sophisticated capabilities to GoLive beyond what is possible
with standard Extend Script. Writing such code requires knowl-
edge of C compilers and is for advanced developers only.

Getting Started with Extend Script
To use extension modules created with the SDK and to test
your own extension modules, you must first ensure that you
have the Extend Script module enabled in preferences. The
GoLive installer activates this module by default, so you
should not have to make any changes unless you have
disabled it.

You may want to first try out some of the sample extensions
that come with the SDK to give you an idea of what it can do.
If you have a Mac, you will find the SDK samples in the SDK
folder on your GoLive installation CD-ROM. If you use

EEA P P E N D I X

3347-9 AppE.F.qc 11/20/00 14:40 Page 1

2 Appendixes

Windows, the samples are installed on your hard disk into the same folder as the
GoLive application. To install the sample extensions, simply drag them into the
Extend Scripts subfolder of the Modules folder.

The SDK documentation and sample code are regularly updated. By the time this
book is published there will probably be a newer version of the SDK available
from the Adobe Web site at http://partners.adobe.com/asn/devel-
oper/gapsdk/GoLiveSDK.html. Always make sure you are using the latest
version of the SDK.

Examining the Structure of an Extend Script
Every Extend Script module is defined by a file called Main.html. Each script has
its own Main.html file that is located in its own folder in the Extend Scripts folder.
If any images or other resources are required by the module (for instance if the
Extend Script defines a new palette object or a custom box), they must be located
in the same folder as the Main.html file. You can see the directory structure of an
Extend Script in Figure E-1.

Figure E-1: The Extend Scripts folder structure

Although the Main.html file is a normal text file and contains the <head>, <body>,
and other HTML tags, you never actually view this page in a browser. The Main.html
file contains special SDK-specific markup tags and JavaScript code that GoLive inter-
prets when it is launched and the code becomes part of the GoLive application.

Because GoLive loads Extend Script modules at launch, testing your modules can be
slow because you have to relaunch GoLive every time you make changes to the code.
You can reduce the time it takes to launch GoLive whilst testing by using the prefer-
ences dialog box to disable modules you aren’t currently using.

Tip

Note

3347-9 AppE.F.qc 11/20/00 14:40 Page 2

3Appendix E ✦ Extend Script and the GoLive SDK

The basic layout of a GoLive SDK extension is as follows:

<html>
<head>
<title>GoLive 5 Extension Module</title>
</head>
<body>
<!--Module name-->

<jsxmodule timeout=0 debug>

<script language=”javascript”><!--
//JavaScript that processes events goes here
//-->
</script>

<!--various SDK tags to define palettes, menus etc. go
here-->
</body>

</html>

As you can see, it does not look very different to a standard HTML page at this point.

The GoLive SDK provides several special markup tags that you use to define new
interface elements in GoLive such as palettes, menus, inspectors, custom tags, and
dialog boxes. All the GoLive SDK tags start with the letters jsx to distinguish them
from other tags. Table E-1 provides a list of the all the SDK tags and an explanation
of what they do.

You are free to mix normal HTML tags with the special SDK tags in your Main.html
page. Most of these will be ignored by GoLive unless they are contained within
SDK tags, but they can be used as a way to display usage and copyright informa-
tion should a user directly open your Main.html file in GoLive.

As with normal HTML tags, these special tags each have their own set of attributes
that modify their behavior. For instance, you can set the width and height of a fixed-
size custom box by defining the fixedWidth and fixedHeight attributes of the
<jsxelement> tag.

You don’t need to write the tags in any special order in the Main.html file, but some
tags require other tags to be present. An example of this is the <jsxinspector>
tag; because it presents an inspector for a custom box, you must define the custom
box as well for it to function properly.

Tip

3347-9 AppE.F.qc 11/20/00 14:40 Page 3

4 Appendixes

Table E-1
GoLive’s SDK Tags and Their Functions

Tag Function

<jsxmodule> Defines the name of the module, the error timeout setting,
and the debug status

<jsxlocale> Enables you to supply internationally localized versions of
the text presented by your module

<jsxdialog> Defines a dialog box

<jsxpalette> Defines a floating palette similar to the Inspector window

<jsxcontrol> Defines controls such as checkboxes, edit fields, and URL
fields for palettes and inspectors

<jsxpalettegroup> Defines a “tab” in the Object palette that holds palette items

<jsxpaletteentry> Defines an individual palette item and the custom tag or
markup that is written to the page when the palette item is
used

<jsxelement> Defines a custom box

<jsxinspector> Defines an inspector

<jsxmenubar> Surrounds a block of menu-definition statements

<jsxmenu> Defines an individual menu or submenu

<jsxitem> Defines a menu item

 Used to reference any images used by your extension,
typically palette icons

Exploring JavaScript and the GoLive
Object Model

Once you have defined the visual elements of the extension using markup tags, you
can actually set about making your extension do something useful. You bring your
extension to life using JavaScript.

GoLive 5 exposes the markup tree of a document as a standard JavaScript object
model. This means that all the markup elements of a page are accessible as Java-
Script Objects, and the attributes of the markup elements are accessible as proper-
ties of those objects. You can also reference several global objects and properties,
such as the name of the current module.

3347-9 AppE.F.qc 11/20/00 14:40 Page 4

5Appendix E ✦ Extend Script and the GoLive SDK

The JavaScript Shell
GoLive 5 provides you with a JavaScript Shell palette that is extremely useful when
developing extension modules, as it enables you to view the current properties of
any object simply by typing the name of the object property into the command
field. If the JavaScript shell is not visible on your screen, you can make it visible
by selecting it from the Window menu. Try testing the JavaScript shell by typing
document.title into the command field of the shell and pressing Return or Enter.
You should see the name of the currently open document appear in the results
pane, as shown in Figure E-2. If no document is currently open, the result will be an
error. You can also directly execute JavaScript commands using the shell. Try typ-
ing alert(“Hello, world”); into the command field and pressing Return or Enter.

Figure E-2: The JavaScript Shell palette

As stated previously, if you make changes to the code of your extension module,
you need to quit and restart for the changes to take effect. However, if you are
making changes only to the JavaScript and not to the markup tags, you don’t need
to quit GoLive — you can reload the JavaScript for all your extensions on the fly. To
do this, use the fly-out menu on the JavaScript Shell palette and select Reload all
Scripts. This can save a lot of time.

Functions
All interaction with the elements in your extension is handled by JavaScript func-
tions, which respond to JavaScript events. Various standard functions are called by
GoLive when certain events occur — for instance when a user selects a menu item.
For instance, GoLive calls the menuSignal() function whenever a menu item is
selected. If you define the menuSignal() function in your extension module, then
GoLive runs your code whenever a menu item is selected. Too many standard func-
tions exist to list here, but they are covered in detail in the PDF documentation for
the GoLive SDK.

As well as writing code to handle the standard functions, you can define your own
functions, just as you can using standard JavaScript running in a browser. In fact, if
you are experienced in JavaScript development you may already have some stan-
dard functions that can be reused in a GoLive extension.

Tip

3347-9 AppE.F.qc 11/20/00 14:40 Page 5

6 Appendixes

Writing an Extend Script
To give you a clearer picture of how it all fits together, I’ll go through the process
of writing a simple Extend Script. This example Extend Script is not particularly
useful — it reverses the currently selected text — but it demonstrates nicely how
the SDK works.

First create a folder inside the Modules/Extend Scripts folder and give it a unique
name. Then use GoLive to create a blank HTML page and save it in the folder you
just created using the name Main.html.

The result of this exercise is on the CD-ROM that comes with this book. After you
complete your first foray into Extend Script, you can check your work against it.
You can find the Script in the Exercises folder, which is organized by chapter.

Defining the module
Switch to Source view. The first tag you will add is the <jsxmodule> tag. Type the
following after the initial <body> tag:

<jsxmodule name=”revers-o-matic” timeout=”0” debug>

This tag does three things:

✦ It specifies the name of the module. If you do not specify the name here then
GoLive uses the name of the folder containing your Main.html tag.

✦ It turns on debugging. This enables you to use GoLive’s built-in debugger to
check problems with the code.

✦ It sets the error timeout to 0. If you do not set this attribute, in some circum-
stances if your code contains an error GoLive may get stuck in an endless
loop. This attribute forces the loop to time out, thus preventing a freeze.

Creating the menu
Now define a menu item. Because this Extend Script performs only one function,
you only need one menu item and you have no need to create an entirely new menu.
GoLive enables you to add items to the special menu, so that’s what you’ll do.

Add the following code to your document, below the <jsxmodule> tag:

<jsxmenubar>
<jsxmenu name=”special”>
<jsxitem name=”reversomatic” title=”Reverse text”>

</jsxmenu>
</jsxmenubar>

On the
CD-ROM

3347-9 AppE.F.qc 11/20/00 14:40 Page 6

7Appendix E ✦ Extend Script and the GoLive SDK

As you can see, the markup for creating a menu is fairly self-explanatory. The
<jsxmenubar> tags surround the block of menu definitions. All menu definition
tags in the Main.html file must be contained within the <jsxmenubar> tags. The
<jsxmenu> tag defines an actual menu — usually this tag is used to create a stan-
dalone menu, but by specifying the name as “special” you are able to add the menu
item to the existing Special menu. You cannot add menu items to any of the other
standard menus.

The <jsxitem> tag defines the menu item itself. The name attribute will be used
later by your JavaScript — it names the menu item object in GoLive’s object model.
The title attribute is the actual text that is displayed in the menu.

If you like, you can test the menu now — save the Main.html file, quit GoLive, and
relaunch. If you go to the Special menu you should now see a menu called “Reverse
text,” as shown in Figure E-3 The menu will not do anything at this stage, but you’re
almost there!

Figure E-3: The new menu item displayed in the Special menu

3347-9 AppE.F.qc 11/20/00 14:40 Page 7

8 Appendixes

Handling the menu event
Now you need to tell GoLive what to do when the menu is selected. Reopen the
Main.html file and switch to Layout mode. You will notice that the SDK markup tags
are shown using the standard GoLive foreign tag display. Because you need to cre-
ate some JavaScript code, drag the JavaScript item from the default tab of the
Objects palette onto the page, ensuring that you place it between the <jsxmodule>
and <jsxmenubar> blocks. Double-click the JavaScript icon to open the JavaScript
editor window.

You don’t need to use the JavaScript editor to edit your scripts — it’s possible to
edit them in Source view — but the script editor has some nice JavaScript editing
features such as syntax coloring and error checking that make editing and debug-
ging your code a lot easier.

When a menu item is selected, GoLive calls the <menuSignal> function. To define
the function, enter the following code into the JavaScript Editor:

function menuSignal(menuItem)
{
switch (menuItem.name)
{
case “reversomatic”: checkselection(); break;
default: alert (“Sorry, an error occurred.”);
}

}

When GoLive calls the function, it also sends the argument menuItem. This is a stan-
dard GoLive menu item object, and therefore it has a name property, which you test
for using the switch statement. The switch statement checks to see if menuItem.
name is “reversomatic.” If you recall, this is the name you gave the menu item in the
<jsxitem> tag. If the name of the menu is indeed “reversomatic,” then the function
checkselection() is called; otherwise, an error message is displayed.

Checking that the selection is valid
The checkselection() function is required because the script is only valid if the
user has made a text selection. You obviously don’t want to try and run a text manip-
ulation function on a table or an image, so you need to check that the current selec-
tion is valid text. The following code will do exactly that, so add it to your module:

function checkselection()
{
//ensure that the user has selected text and not an image

etc.
if (document.selection.element.elementType != “text”)
{
alert(“Please select a single run of text.”);

Note

3347-9 AppE.F.qc 11/20/00 14:40 Page 8

9Appendix E ✦ Extend Script and the GoLive SDK

return false;
}
switch (document.selection.type)
{
// check the selection type

case “full”: var el = document.selection.element;
var strt=document.selection.start;
var len=document.selection.length;
reverseText(el,strt,len);
break;

case “none”: alert(“You have not selected anything.”);
break;

case “point”: alert(“You have not selected anything.”);
break;

case “complex”:alert(“Please select a single run of
text.”);

break;
case “part”: var el = document.selection.element;

var strt=document.selection.start;
var len=document.selection.length;
reverseText(el,strt,len);
break;

case “outside”:alert(“You have just done the impossible!”);
break;

default: alert(“Sorry, an error occurred.”);
}

}

The first part of this function checks to see that the selected element is indeed text
and not some other tag type. It does this by checking the value of the property
document.selection.element.elementType. This is a standard property of the
element object and can be any one of “text,” “tag,” “comment,” or “bad.” You are
only interested in text selections, so you give the user an error message if the selec-
tion is anything else.

The next section of the function checks the type of selection the user has made.
When you select an object in GoLive you can select all of the object, part of the
object, or even multiple objects. You cannot run the text manipulation function if
multiple objects are selected, nor can you run it if no objects are selected. You can
test the type property of the document.selection object to determine what the
current selection status is.

If the selection type is “full” or part — in other words, the user has selected either
all the text or some of the text — then you call the function reverseText() and
send it the selected element and the start and length of the current selection as
arguments. If the user has made a “complex” selection (a multiple selection, includ-
ing a multiple paragraph selection) or has not made a selection, then you present
an error message using the standard JavaScript alert function.

3347-9 AppE.F.qc 11/20/00 14:40 Page 9

10 Appendixes

Doing the work
Now that you know that you have a valid text selection, you can go about actually
doing the text manipulation that the extension module is designed to do. All the
actual work is done in the following function, which you should now add to your
module code:

function reverseText(el,strt,len)
{

var newtxt=””;

//break selection into component parts

var txt=el.getInnerHTML();
var reverse=txt.substring(strt,(strt+len));
var lefttxt=txt.substring(0,strt);
var righttxt=txt.substring((strt+len),txt.length);

for (i=0; i<=reverse.length; i++)
{

//loop through the text in reverse and store the result
var newtxt = newtxt + reverse.charAt(reverse.length-i);
}

//replace the current text with our new text
el.setInnerHTML(lefttxt+newtxt+righttxt);

//force GoLive to reparse the document so our changes are
displayed
document.reparse();

}

The function begins by creating a blank string variable to hold the new reversed
string. Because the setInnerHTML() function that is used to write the new
reversed text to the document replaces the whole selected element, we have to
make sure that we only reverse the actual selected text. The function breaks the
element’s text into the text before the selection, after the selection, and the selec-
tion itself. It then loops through each character of the text selection in reverse and
adds the characters to the new variable using the standard JavaScript text function
charAt().

The function then calls setInnerHTML(), which is a GoLive function that replaces
the content of a markup element with a specified text string. In this case you are
applying it to the element that contains the current text selection. This writes the
new reversed string to the HTML document. Note that the element text is recon-
structed with the reversed text in the middle.

3347-9 AppE.F.qc 11/20/00 14:40 Page 10

11Appendix E ✦ Extend Script and the GoLive SDK

Lastly, the function calls the document.reparse() function. This function causes
GoLive to update the layout view based on the new markup.

That’s it! You now need to close the JavaScript editor, save the page, quit GoLive,
and relaunch it to try out your new extension.

Testing and debugging
If all goes well, you should be able to select some text on the page, go to the Special
menu and select “Reverse text.” If all goes really well, the text should then be
reversed.

However, it’s likely that a window popped up looking similar to Figure E-4. This is
the JavaScript debugger, which you enabled in the <jsxmodule> tag. The bottom
pane of the window displays your code, as shown in Figure E-4. The top-right pane
shows debugging output, in this case the error that caused the debugger to display.
The top-left pane is the stack trace that displays the calling hierarchy at the time
the debugger was called. You can use the debugger to set breakpoints to make it
easier to work out what part of your code is causing problems.

Figure E-4: The JavaScript Debugger window

3347-9 AppE.F.qc 11/20/00 14:40 Page 11

12 Appendixes

If the debugger did display for you, it is likely that you have made a typing error
when entering the example code. JavaScript syntax is particularly specific and is
case-sensitive, so ensure you have entered the example code correctly. You should
be able to use the debugger window to locate where the error has occurred in your
code so that you can fix it.

Learning More About Extend Script and SDK
This is just a small sample of the power of Extend Script and the SDK. Much, much
more could be explained here — your next step should be to read the Adobe docu-
mentation and study the prewritten samples that Adobe supplies so that you can
discover some of the other possibilities that the SDK offers.

✦ ✦ ✦

3347-9 AppE.F.qc 11/20/00 14:40 Page 12

