
How Forms
Communicate

With a typical static page, the user requests a page and
the server gathers it from your folder (directory)

and returns it to the user looking exactly as it did when you
placed it on the Web server. However, it’s possible for any
page served to a user to be generated “on the fly” on the
server when the page is requested. For example, let’s say you
have an online bookstore. There’s a field on your form from
which the user makes a selection. (This is called a select
field.) You want this field’s Options to include the books that
your store has for sale. If you “hard wire” the titles in, every
time the available titles change you have to open the page in
GoLive and change the code within the list. Instead of doing
this, you can have the server call upon a middleman. That
middleman calls for your form page, reads the special
tags/commands, learns to query a database and what to seek
(a search for all sale titles in this example), merges the results
into a sort of template page, and presents the users with an
up-to-date list of titles.

The middleman is doing its work on the server so it’s called a
server-side processing tool. With any server-side processing
tool, you still have HTML forms, with the usual checkboxes,
radio buttons, text areas, submit button, clear button, and so
on. And, of course, you can still use GoLive to create these
pages. In addition to standard HTML, you have other special
tags (commands) that are created specifically for the program
that handles your processing on the server and returns a page
to your users.

CCA P P E N D I X

3347-9 AppC.F.qc 11/20/00 14:40 Page 1

2 Appendixes

The page you create in GoLive is the page that contains the special tags (com-
mands). Those tags or commands are specific to the technology you use to do the
server-side processing. The page that is actually served to the user is a combina-
tion of your page, with the query results inserted in place of the tags. When the
user views the source of the page he or she sees a regular HTML page because the
insertions are complete.

In the following sections, I describe some of the server-side programs and what
they do.

How Forms Communicate
Forms can do a lot more than just collect information. Forms can add life to a page
by adding interactivity. When you create a regular Web page, placing your words,
pictures, and other content, you may be adding multimedia and animation but you
are still creating a static page — that is a page that remains the same every time a
user calls it up. A form, however, creates the opportunity for communication
between the user and your Web site. Any time you use your visitor’s input to help
form the page that’s served to the user, you’re creating a dynamic Web page.

Dynamic Web pages are customized for each user or type of user. This customization
is based on information either directly provided by the user, such as the user’s
answers to a form’s questions, or indirectly provided by the user, such as the user’s
environment. The page that is returned to the user is often constructed from data
selectively retrieved from a database.

Forms, in conjunction with a back end database, can enable a user to search for
specific information or automatically provide a user with date-sensitive or event-
sensitive information. The form shown in Figure C-1 is a good example of a back-end
database. Holli Boyd’s database contains her postcards, which are merged into a
form generated from user input to create pages on the fly. The system then sends
the recipient notification of the card. Discussion forums and chats also use forms to
enter and retrieve data from a server. Shopping carts and auctions are yet another
use of forms.

It’s important to realize that whereas GoLive enables you to design the form (as in
Chapter 16), it doesn’t provide the actual communication between the form on your
page and the server-side actions that are required for the interactivity. When a user
clicks your Submit button, a command is sent to the Web server, just as when any
link is clicked or URL is typed into the address bar. But Web servers are designed to
serve pages, not to search a database or phone a credit card company. So a third
program, sometimes called middleware, must come into play. The commands call-
ing for this program are hidden in the form request that gets sent to the server
(because you put them there using the GoLive interface).

Note

3347-9 AppC.F.qc 11/20/00 14:40 Page 2

3Appendix C ✦ How Forms Communicate

Figure C-1: Holli Boyd’s electronic postcard (at www.hsbdesigns.com/
postcards/cards.html) — a form that collects information, generates
a Web page, and then generates and sends an e-mail to inform
the recipient

The server recognizes that the hidden commands belong to another application and
sends them on their merry way to the middleware or agent that the form addressed
it to. This agent is actually another program. It recognizes these commands because
they are written in its own special language, and it acts accordingly. Maybe its job is
to send instructions to a database as requested and await a reply or maybe its job is
to send a credit card authorization request and await a response. Whatever its task,
it waits for a result, and then, using the result, dynamically creates a Web page that
incorporates the newly obtained information. Everything that happens on the
server, outside of the server’s normal actions, is called server-side processing.

Several types of agents are available to do server-side processing. Understanding a
bit about them helps you make a wise choice of hosts and/or servers. After a brief
overview of this additional server-side communication, you’ll understand how to
build your form.

3347-9 AppC.F.qc 11/20/00 14:40 Page 3

4 Appendixes

The CGI — Common Gateway Interface
The original and most common method of communication between the form and
the processing that occurs after a submission is contained in a program called a
Common Gateway Interface (CGI). The CGI program (or script) provides the rules
through which the program communicates with the Web server. Just as several
word processing or drawing programs exist in the computer world, many CGI
scripts exist as well. Just as each word processor performs different functions
beyond the most general task of creating text documents, each CGI script per-
forms different functions, while the base one — communication to and from the
browser — remains the same.

CGI scripts vary greatly. A CGI can be a simple text document with only a few com-
mands designed to do one or two specific tasks, or it can be a full service program.
For example some enable you to do just about any operation within a database that
you’d normally do directly. You can write your own CGI script, or buy one that’s
commercially marketed.

Exactly how a CGI behaves varies from platform to platform, but the basics are the
same. The information sent to the server by the form’s submission includes an
action that contains the name of the CGI script in some manner. It also contains
certain information or commands that you embed within your form. Every CGI pro-
gram knows to take the information it’s been given, process it, and then return that
information to the server.

How CGI works
Here’s how a CGI program works (you can also follow along with Figure C-2):

1. When the user clicks a submit button the browser packs up the form’s infor-
mation and sends it to the Web server. The browser always carries informa-
tion to the server. In this case it just carries more. The additional item it
carries is the Form Action.

2. The server receives the information, but notices that the directions aren’t
intended for its normal function. It sees the Form Action, which includes the
name of a CGI (or some kind of CGI ID), so it knows to send the directions to
the CGI.

3. The CGI interprets the request and performs your embedded commands.
For example, if the command is to search a database for all records contain-
ing a specific word, date, or event, the CGI program translates that com-
mand into a language that the database understands, and then waits until
the search is complete. Armed with the data gained during the search and a
special response command, the CGI then packs up that data in a way that
the Web server can send it.

3347-9 AppC.F.qc 11/20/00 14:40 Page 4

5Appendix C ✦ How Forms Communicate

4. After doing its special job the CGI returns its information to the Web server.

5. The server sends the information back to the browser.

6. The browser displays the results for you. That little CGI script is a very pow-
erful program.

Figure C-2: A visual depiction of how a form communicates with a database
and returns a response

Reinventing the wheel?
Many CGIs are available. Some are specifically designed to communicate with a spe-
cific type of database. In that case, you are able to have your users send informa-
tion to a database, similar to when a user signs a guest book. You are also able to
take communication between the user and database even further. For example, the
user can send information to a database and the CGI would carry a result back from
it, such as when a user searches for information from your site, and then receives
the desired information. Another common use for a CGI is to process a form and
return a confirmation by e-mail. Yet another is an online shopping cart.

Your choice of which CGI script to use depends upon several factors. First is what
service you wish to perform and what platform your server runs on. (The functional-
ity of the CGI must be written to run on the platform on which your server is running,
such as Windows NT, Unix, or Mac.) Your ISP or site host’s parameters (rules) are
another major issue. You may be permitted to use any CGI scripts or be limited to a
few specific ones. They may come at no charge, or you may be charged for some. If
you use a database to hold your collected and distributed information, that’s another
major consideration because a CGI program must be able to communicate with that
type of database.

The CGI processes
the request. If a
database is involved
it carries the information
to the database.

The server sends
the data back to
the browser

A browser sends
a request to a web
server using HTTP. The server sends a

message to the CGI,
calling it into action.
The server then moves
on to other things but
keeps track and waits
for the right reply.
Meanwhile...

Again the CGI
processes the data
and has the data
brought back to
the server.

When the database
is done the data is
carried back to
the CGI.

3347-9 AppC.F.qc 11/20/00 14:40 Page 5

6 Appendixes

You can write your own CGI script if you are so inclined, or you can use a commer-
cial CGI. If you’re doing only a simple, limited exchange of information it may be
easy to write your own or borrow from someone else’s. (It’s common for people to
help each other out by sharing on the GoLive Talk e-mail list. See Chapter 2 for
more about such resources.) In cases where you exchange a lot of data or deal with
many variables, a commercial CGI may be the better and easier choice. Shopping
carts, for example, are usually intricate because they have to track a user’s pur-
chases, and then carry out a payment method. Several shopping carts, also called
e-commerce solutions, are available today. Some are commercial, while others are
freely shared. If you’re considering buying one, or working on implementing a free
one, investigate carefully. CGI scripts vary in quality. A badly written CGI script can
be slow and frustrating and even possibly crash a server, whereas a well-written
one performs quickly and efficiently.

To determine which CGI scripts you can use, begin by checking with your ISP/site
host for answers to the following questions:

✦ What is the policy on CGIs?

✦ Are any provided with your account?

✦ If so, what does each do?

✦ Is a fee required to use it or any other limiting factor you should know of?

Plug-ins — closer than CGI integration
You’re probably familiar with the concept of plug-ins because Photoshop and pro-
grams like it have long been using plug-ins. The key to a plug-in is that rather than
act as a totally independent program, it plugs into the related program. For exam-
ple, when you’re using Photoshop you access a plug-in from within the application,
rather than calling up a separate program.

Likewise, the Web server can have plug-ins, or modules, as they are often called.
This eliminates one step of communication that would normally have to take place
between the Web server and the CGI. Actually, it eliminates two steps — one as the
request comes in and the other as the data is returned.

Plug-ins or modules are considerably faster than a CGI. However, they’re more com-
plicated to write because they need to be coded per the server’s application pro-
gramming interface (API) which includes properly tying it into the server. A module
written for one server is not compatible with another server. Also, because they
plug into the server, they must be installed; the server must be restarted because
they need to load when the server starts up.

Most Web servers have a plug-in or module type interface. Apache servers have
modules. Netscape has the NSAPI. Microsoft IIS has ISAPI, which is popular in the

3347-9 AppC.F.qc 11/20/00 14:40 Page 6

7Appendix C ✦ How Forms Communicate

NT world. Your site host may well be running plug-ins or modules that you’re wel-
come to take advantage of. If you know one, you may even be able to request it
specifically.

Due to what’s involved you’re unlikely to write a plug-in. They’re the domain of soft-
ware developers. That’s why CGI scripts remain popular.

One of Apache’s modules is “mod_perl,” a Perl interpreter embedded in the Apache
Web server. This enables you to run Perl scripts directly in the Web server. This is
faster than running them via CGI, which is how Perl scripts are traditionally run.

From a form creation point of view, no difference exists between a plug-in (mod-
ule) and CGI, so I use the term CGI in the rest of this appendix. (A CGI is actually a
script, or program, but at times I take the liberty of simply using CGI instead of
CGI script or CGI program. All three terms are interchangeable.)

Other Server-Side Technologies
Several more advanced tools exist for creating dynamic Web pages. Some of these
tools include ColdFusion, Active Server Pages (ASP), Hypertext Preprocessor (PHP),
and Sun’s JavaServer Pages (JSP). Some are proprietary, meaning they require the
manufacturer’s specific server. You’ll only use one of those if you definitely intend to
host your site on that particular type of server. Others can be used on a variety of
servers. As with CGIs, this is beyond the scope of this book. However, I introduce
you to a few of the most popular advanced server-side technologies here. You’ll
need to check with your ISP to learn whether any of these are available for you.
Then you can visit the recommended pages to learn more about each option.

ColdFusion
ColdFusion (not to be confused with the putative breakthrough in physics) is a
product from Allaire. Using ColdFusion, programmers create templates, which are
files containing standard HTML tags and ColdFusion tags. You can create these tem-
plates in GoLive and keep them in your Site Window with the rest of your site.

The ColdFusion tags, of the form <CFthecommandname> xyz </CFthecommandname>,
enable database queries, invocation of COM objects, and more. ColdFusion’s strength
is that it does not require knowledge of a traditional programming language, because
its tags look like HTML. In fact, the Allaire calls its tags CFML (ColdFusion Markup
Language.) While early versions of ColdFusion worked via CGI, recent versions use
the API — a programming protocol provided by various Web browsers such as
Apache. ColdFusion runs as a separate application (called the ColdFusion server) but
because of the API, it is tightly connected to the server software. It runs on Windows
NT and Solaris platforms, and, as of this writing, is due to run on Linux machines.

Note

3347-9 AppC.F.qc 11/20/00 14:40 Page 7

8 Appendixes

Out of the box, GoLive doesn’t recognize ColdFusion (CF) tags as legitimate tags.
You have two easy ways to ensure GoLive will respect your CF code. You can enter
the CF codes into GoLive’s Web settings so GoLive recognizes the tags as legitimate
code, or you can use GoLive’s <noedit> tag around your CF code. (I show you this
in the next sections.)

In ColdFusion you can have a template (page) called ChooseBook.cfm that looks
like this:

<HTML>
<HEAD>
<CFQUERY NAME=”Books” DATASOURCE=”BooksDatabase”>
select title from BooksTable where InStock=’True’
</CFQUERY>
</HEAD>
<BODY>
<FORM ACTION=”BuyBook.cfm” METHOD=”POST”>
<CFSELECT QUERY=”Books”></CFSELECT>
<INPUT TYPE=”Submit” VALUE=”Proceed to checkout”>
</FORM>
</BODY>
<HTML>

When users browse to ChooseBook.cfm, they see a regular HTML page, with a
Select field whose Options are the book titles. If they view the source, all they see
is pure HTML, no ColdFusion tags such as CFSELECT, because the server has exe-
cuted the query and replaced the CF tags with HTML and data. This example per-
tains to CF, but ASP and PHP operate similarly.

You can learn more about this technology at www.allaire.com/products/cold-
fusion.

ASP — Active Server Pages
ASP, or Active Server Pages, is Microsoft’s offering to the world of dynamic Web
pages. It is designed to run only on Microsoft IIS Web servers under Windows NT.
However, a program called Chili!Soft ASP enables Unix servers and other platforms
to run ASP as well. (A Mac flavor does not exist as of this writing.)

Using ASP, programmers create pages with HTML and scripts written in VBScript,
JScript, or Perl. ASP tags are of the form <% xyz %>. These scripts tell the IIS server
what to do. (They’d be useless on any other server because these tags are propri-
etary to ASP technology.)

You can use GoLive’s Dynamic Link feature to create ASP pages.

3347-9 AppC.F.qc 11/20/00 14:40 Page 8

9Appendix C ✦ How Forms Communicate

See Chapter 24 to learn more about dynamic links.

PHP — Hypertext Preprocessor
PHP, or Hypertext Preprocessor, is a server-side HTML-embedded scripting lan-
guage. It is a free, open source alternative to other commercial middleware. PHP
can be used to perform functions such as collect form data, generate dynamic page
content, manage user session information, or send and receive cookies.

GoLive 5 has much improved support for PHP code within your HTML documents.
Problems in GoLive 4 with quotes and end tags (</tag>) within PHP code are
now resolved.

Instead of writing a program with lots of commands to output HTML, you write an
HTML page with some embedded code to perform a task (in this case, output some
text). The following is an example:

<html>
<head>
<title>Example</title>
</head>
<body>
<?php echo “Hi, I’m a PHP script!”; ?>
</body>
</html>

The PHP code is enclosed in special start and end tags that enable you to jump into
and out of PHP mode. It runs on Windows NT, Unix, Mac OS X, and Linux platforms.
It can be run via CGI or as part of the Apache Web server and more than one million
servers with PHP are installed worldwide. (You need to ask your site host if the
server supports PHP.) PHP is very adaptable in that it provides four different tags
you can use to embed code into a page.

Writing a database-enabled Web page in PHP is incredibly simple and it supports
Adabas D, InterBase, Solid, dBase, mSQL, Sybase, Empress, MySQL, Velocis, FilePro,
Oracle, Unix, dbm, Informix, and PostgreSQL. Other database systems such as
Microsoft SQL Server are supported through ODBC. PHP also has support for talk-
ing to other services using protocols such as IMAP, SNMP, NNTP, POP3, or even
HTTP. You can also open raw network sockets and interact using other protocols.

PHP can be used for many applications on your Web site such as shopping carts,
discussion forums, content management systems, dynamic page creation, personal-
ization and customer logins, security, and many more.

New
Feature

Cross-
Reference

3347-9 AppC.F.qc 11/20/00 14:40 Page 9

10 Appendixes

The example similar to the preceding ColdFusion one may look like this in PHP:

<HTML>
<HEAD>
<?php mysql_connect(“user”, “pass”, “bookstore”)
$query = “select title from BooksTable where InStock=’True’” ;
$result = mysql_query(“BooksDatabase”, “$query”); ?>
</HEAD>
<BODY>
<FORM ACTION=”BuyBook.php” METHOD=”POST”>

<SELECT name=”selectName” size=”1”>
<?php while($row = mysql_fetch_array($result)) {
print ‘<OPTION value=”’;
echo $row[“ISBN”];
print ‘“>’;
echo $row[“title”];
print ‘</OPTION>’; ?>
</SELECT>

<INPUT TYPE=”Submit” VALUE=”Proceed to checkout”>
</FORM>
</BODY>
<HTML>

When users browse to ChooseBook.php, they see a regular HTML page, with a
Select field whose Options are the book titles. Like with CF, all they see from the
source is pure HTML, no PHP code, because the server has executed the query and
replaced the PHP tags with HTML and data.

You can learn all about PHP at www.php.net. You’ll find many tutorials, code exam-
ples, and applications that use PHP both on the PHP Web site and on many other
support sites linked to from the PHP site.

Choosing a technology
When choosing among these technologies, you need to consider several factors.
They include the following:

✦ Server platform. The hardware and operating system. For example: a Pentium
II PC running Windows NT, a G4 running Mac OS X Server, or a Sun Enterprise
Server running Solaris.

✦ Web server software. The software that processes the HTTP requests. For
example: Apache, IIS, Zeus, Xitami, AOLServer, or WebSTAR.

✦ Cost. Many factors can influence the cost of using a particular technology
including Web hosting costs, development time, product licensing costs, and
contracting costs if it is a large site or you are having someone do the pro-
gramming for you.

3347-9 AppC.F.qc 11/20/00 14:40 Page 10

11Appendix C ✦ How Forms Communicate

✦ Ease of programming. You need to consider your background and the learn-
ing curve of using each technology (for example ColdFusion may be easier if
you only know HTML, whereas PHP may be a better choice if you can already
program in Perl or C). You also need to think about the availability of pro-
grammers in your area, whether your client wants to maintain the site them-
selves, and other issues. Consider maintainability as well as site construction.

✦ Portability. Can you easily move your site onto a different server platform or
Web host? How easy is it to find another Web host that supports the technol-
ogy you are using?

✦ Scalability. If your site gets a lot of visitors, or if it’s featured on a major news
or portal site (such as Slashdot, Yahoo, NBC, and so on), is the technology
you have able to cope with the number of hits you are receiving?

✦ Support. Is support for the technology readily available? Is there a large user
community that you can interact with if you have problems?

Using a technology
If you are building a form that uses any server-side processing and requires propri-
etary tags, I recommend that you design your page and form first. Then, after all of
the page and form’s visual elements (and standard HTML) are in place, switch to
the Source tab and add the technology-specific code.

As you do, refer to the “Dealing with Nonstandard Tags” section in Chapter 16,
which covers all of the standard form elements.

Understanding GoLive’s Trouble
with Non-HTML Tags

Recall that GoLive sometimes has “problems” with some code. In reality, no single
page-creation program can know, identify, and make it simple to work with every CGI
and server-side processing application. Simply too many of them exist to accommo-
date and the syntax of their commands is too varied. The primary language of the
Web is HTML so priority must be given to HTML code. Extensible Markup Language
(XML) is becoming more popular and offers advanced page creation so advanced
support for XML is an excellent addition to GoLive. When it comes to supporting
anything outside of the HTML-family norm, any program must make a conscious
decision to support that code.

3347-9 AppC.F.qc 11/20/00 14:40 Page 11

12 Appendixes

Like every other program, GoLive can choose to support some such code, but can-
not possibly begin to cover them all. For example, double brackets (<< or >>) are
also problematic, as they are not proper HTML syntax. (They are also problematic
in Dreamweaver.)

While GoLive cannot be everything to everyone in its visual interface (Layout
mode), its Source mode is a full-fledged HTML-editing program that can be used to
write any code for the Web. You just may have to do some of that code in the good-
old HTML source.

That said, GoLive 5’s support for non-HTML tags and code is greatly improved over
GoLive 4. The new 360Code feature means that it will be a rare occasion that GoLive
will change or have problems with your non-HTML code.

✦ ✦ ✦

3347-9 AppC.F.qc 11/20/00 14:40 Page 12

